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Abstract

It is known that stability of a model predictive control system is ensured if the terminal conditions
of the optimal control problem solved online satisfy certain criteria. The usual requirement is that
the terminal cost function is a control Lyapunov function defined on the terminal constraint set.
Conventionally the terminal cost function is chosen, when the system being controlled is linear, to be
the value function for the infinite-horizon unconstrained optimal control problem and the terminal
constraint set is chosen to be the output admissible set for the closed-loop system using the optimal
unconstrained controller u = —Kxz. The purpose of this paper is to relax these terminal conditions
thereby facilitating online solution of the optimal control problem. Using some recent results, we
present alternative conditions that employ, as the terminal cost, the finite-horizon cost resulting
from a nonlinear controller v = —sat(Kz) and, as the terminal constraint set, the set in which this
controller is optimal for the finite-horizon constrained optimal control problem. It is shown that

this solution provides a considerably larger terminal constraint set.

1 Introduction

This paper is concerned with closed-loop stability of constrained linear systems when model predictive
control is employed. Model predictive control is a form of control in which the current control is obtained
by solving, at each sampling instant, a finite-horizon open-loop optimal control problem and applying
the first element of the optimal control sequence so obtained. Obviously, model predictive control of
constrained systems is nonlinear so that stability is, in general, a nontrivial issue. After the pioneering
work of Chen and Shaw [1], and of Keerthi and Gilbert [5], the value function of the finite-horizon optimal
control problem has been used, almost universally, as a Lyapunov function for analyzing closed-loop
stability [7].

Several ‘ingredients’ of the online optimal control problem directly affect closed-loop stability; these
are: the terminal cost F(+), the terminal constraint set X’y (both of which are employed in the optimal
control problem solved online), and the local controller 7 (-) that ensures existence of feasible solutions
to the optimal control problem (see, e.g., [1, 5, 7]). Ideally, the terminal cost F'(-) is the infinite-horizon

value function V.2 (-) (for the constrained optimal control problem), in which case, the finite-horizon value
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function is Vr(-) = V2 (). With this choice, online optimisation is unnecessary and the advantages of
an infinite-horizon problem automatically accrue. However, constraints generally render this approach
impossible. Usually, then, A is chosen to be an appropriate neighbourhood of the origin in which
V2 () is exactly (or approximately) known, and F(-) is set equal to V2 (-) or its approximation. When
the system being controlled is linear, F'(-) is often chosen (see [9, 10]) to be the value function of the
infinite-horizon, unconstrained optimal control problem, k() is chosen to be the optimal controller
(kf(z) = —Kz) for this problem, and X, the mazimal output admissible set O (defined by (4.5)
below) for the closed-loop system using the local controller s;(-). In this case, V2 (z) = F(z) = 2T Px
for all z € Xy. (P and K are given by the solution of an algebraic Riccati equation, see (3.13), (3.14)
below.)

The purpose of this paper is to provide new terminal ingredients for model predictive control of input
constrained linear systems. The ingredients are an improvement over those previously used in that the
terminal constraint set A’y is strictly larger than O, thus facilitating the solution of the optimal control
problem. To obtain the improved terminal conditions we employ recent results [2] that show that the
nonlinear controller x,¢(z) = —sat(Kz) is optimal in a region which includes the maximal output
admissible set O. The proposed terminal cost function F(-) is the finite-horizon value function VY (:).
The proposed terminal cost function F'(-), while still convex (thus ensuring solvability of the optimal
control problem) is no longer quadratic (which implies that the problem is not a quadratic program,
and needs to be solved using convex programming or conventional nonlinear programming). A previous
result [6] dealt with the case of open-loop stable linear plants. The present paper extends the previous
result and is valid for arbitrary linear plants with constrained single input.

The structure of the paper is as follows. Some preliminary definitions and notation are introduced in
§2. Model predictive control is briefly described in §3 where properties of the terminal conditions that
ensure closed-loop stability are specified. In that section we also quote some recent results [2] that give
a regional characterisation of the value function and optimal controller for a finite-horizon, constrained,
optimal control problem; and the region in which this characterisation is valid. These results are used

in §4 to provide new, improved terminal conditions for the model predictive controller.

2 Definitions and notation

The system considered is
z(k + 1) = Az(k) + Bu(k) (2.1)

or, more concisely,
T = f(z,u) := Az + Bu

where x € IR" and u € IR are, respectively, the current state and control and z* is the successor state.

The pair (A4, B) is assumed controllable. The control is required to satisfy the constraint
u(k) € Q (2.2)

for all k, where Q :=[-1,1].

The following notation will be employed. The solution of (2.1) at time k, when the initial state is =
at time ¢ and the control sequence is u, is z%(k;z,i); to simplify notation, z*(k;z) := z"(k;z,0), i.e.
the initial time is dropped when it is zero. For all € > 0, B, := {z | |z| < €}. For any set X in, say, IR",
X¢ denotes the complement of X (in IR"). R := {z € IR | * > 0} and for each A € IR, the function



sata(-) is defined by

u if ju] <A
sata (u) == A ifu>A (2.3)
-A ifu<-A

The function sat(-) is defined to be sat; (-). In the sequel o denotes concatenation, i.e. (aob)(z) := a(b(x)),

a®(z) :=z and, for all i = 1,2,..., a’(z) := (a*~' o a)(z) = (a0 a’ ') (z).

3 Model predictive control

In model predictive control, a finite-horizon optimal control problem Py (z) defined below is repeatedly
solved. Because of time invariance, the initial time in the optimal control problem may be taken to be
zero. Thus Py (z) is defined by

Pn(z): Va(z) = minVy(z,u) (3.1
subject to the control constraint
ueQV (3.2)
and the terminal constraint
z(N) € Xy (3.3)
where
u = {u(0),u(l),...,u(N —-1)} (3.4)
is a sequence of IV control actions,
N-1
Vn(z,u) =Y l(z(k),u(k)) + F(z(N)) (3.5)
k=0
Uz,u) = |x|2Q + |ul% (3.6)

and z(k) := 2"(k;z), k = 0,1,...,N. We assume that ) and R are positive definite, and denote
2|3, := «TQz and similarly for |u|%. At event (z,k) (at state z, time k), problem Py (z) is solved

yielding the optimal control sequence
u’(z) = {u®(0;2),u’(1;2),...,u’(N — 1;2)} (3.7)
the optimal state sequence
x(z) = {2°(0;2),2°(1;2),...,2°(N; 2)} (3.8)
(where 2°(0; z) = =, the initial state) and the value function
Vy(2) = Viv(z,u’(2)) (3.9)
The first control u°(0; x) is applied to the plant so that the (implicit) model predictive control law is
u=ry(z) = u’(0;z), (3.10)

and the procedure is repeated as a new state becomes available.



3.1 Closed loop stability

If F(-) and X are chosen appropriately (see, for example, [7]), the receding horizon control law (3.10)
can be shown to be stabilising. For any function 6 : IR™ — IR™, let 6(-) be defined by

6w, u) = 0(f(z,u)) — 0(a) (3.11)
where f(z,u) = Az + Bu. We have [7]:

Theorem 1 Suppose the terminal cost function F' : Xy — IR, the terminal constraint set Xy and the

local control law ky : Xy — IR satisfy:

Al: X is closed and 0 € Xy,

A2: kp(x) € Q, Vo € Xy (control constraint satisfied in Xy ),

A3: Xy is positively invariant for the system, ™ = f(z,ks(z)),

AY: [}*7 + (z,ky(x)) <0, Ve € Xy (F() is a local Lyapunov function).

Then .
(VR +0(z, kn(2) <O

for all © € Xn, the (compact, convex) set of states steerable to Xy by an admissible control in time N
or less. Also Xn is positively invariant for the closed-loop system z+ = f(x,kn(x)) where kn(-) is the

model predictive control law. Py

Corollary 1 Suppose @ > 0 and R > 0, that (F(-), Xy, k¢(-)) satisfy A1-A4 and that, in addition,
there exists a finite ¢ such that F(z) < c|z|? for all x € X¢. Then the origin is exponentially stable for

the closed-loop system ™ = f(z,kn(x)) with a region of attraction Xy .

Proof: Since @ > 0 it follows from Theorem 1 that there exists a finite positive constant a such that
Vo (x) > alz]?, Vo € Xy

and

Vo (z, kn () < —alz|?, Vo € Xn
Next V¥ (z) < F(z) for all z € Xy [4]. This is easily shown. Let  be an arbitrary point in X; and let
{xf(k;x),k = 0,1,2,...} be the state sequence resulting from initial state z and controller ¢ (-). Then,

by A4
N—1

F(z) > Y U@! (ko) 57 (27 (k;2))) + F (2! (N; )
k=0
where (by A3) zf(k;z) € Xy for all k = 0,1,...,N and (by A2) ks(zf(k;x)) € Q for all k =
0,1,...,N — 1. But, by optimality (since zf(N;z) € X}),
N-1
Vi (@) < Y (ks2), 50 (! (k) + F (2 (N; )
k=0
Hence Vy(z) < F(z) < clz|? for all z € X;. Exponential stability, with a region of attraction Xy,
follows. [ ]



3.2 Regional characterisation of the value function

We review here some recent results [2] that show that the nonlinear controller kp,(:) defined by
kne(z) := sat(—Kz) = —sat(Kx) (3.12)

is optimal in a non-trivial region of the state-space (in the sense that the region includes the output
admissible set, which is defined in the sequel). In (3.12), the vector K is the optimal gain for the uncon-
strained infinite-horizon problem, which is computed from the (unique positive semi-definite) solution

of the algebraic Riccati equation

P=ATPA+Q-K"RK, (3.13)

where
K:=R'B"PA, R:=R+B"PB. (3.14)
In the sequel we consider both a linear controller v = — Kz and a nonlinear controller u = —sat(Kz).

The closed-loop satisfies 7 = ¢¢(x) when the linear controller is used and =+ = ¢,¢(z) when the
nonlinear controller is employed, where the mappings ¢, : IR™ — IR™ and, ¢,¢ : IR™ — IR™ are defined
by

¢o(x) := Agx, Ag:=A— BK, (3.15)
One(z) := Az — B sat(Kx) (3.16)

For alli € {1,2,...,N} (N > 1 an integer) the function J;(-) is defined by
di(z) = Kz — sata, (Kx) (3.17)

where the saturation bounds A; are defined by

i—2
A; = 14+ |[KAB|, i=2,3,...,N (3.19)
7j=0

The set X := IR™, and for each i € {1,2,..., N — 1}, the set X; C IR"™ is defined by
X; = {z | 0;(AT Agz) = 0} = {z | |K;z| < Ay} (3.20)

where
K;:= KA Ag. (3.21)

We also require the sets V; (i € {1,2,...,N}) and Zy defined by

Y;; = X() r‘le...ﬂXi,l, (322)
Z1 = Y1 = Rn, (323)
Zn = x| ¥, () e YN, k=0,1,...,N =2}, for N > 2. (3.24)

We can now state the main results of [2]:

Lemma 1 For anyi € {1,2,...,N — 1} define the functions ¢ne(-) and 6;(+), 6;41(-) as in (3.16) and
(8.17) respectively, and the set X; as in (3.20). Then:

0 (A hne(x))? = 0111 (Alx)?, forall =€ X;. (3.25)



Theorem 2 The optimal value function VJ(-) for problem Py with F(z) := 2T Pz and X; := R"

satisfies
N

V() = JN(z) :=2"Px+ R 6,(A¥'2)’, Vo € Zy (3.26)
k=1
and the optimal control law kn(-) satisfies
kN(Z) = kne(z) = —sat(Kz), Yo € Zn (3.27)
where the set Zn is defined by (3.24). °

Since the functions z + §; (A*~1x)? are convex, so is the value function V(-).

4 Terminal conditions

4.1 Standard specification of (F'(-), Xf, k(-))

A triple (F(-), Xt,k¢(-)) satisfying A1-A4 and F(z) < c|z|* for all z € Xt ensures exponential stability
as shown in §3.1 above. A useful choice of terminal conditions [9, 10] for the problem considered is to
choose F(+) to be the value function V2, () for the unconstrained infinite-horizon optimal control problem
Puc(z) for the same system (2.1), defined as

Puc(z): VO(x)= ml}n Ve (z, 1) (4.1)
with cost
o0
Vie(, 1) 1= U(w(k), u(k)) (4.2)
k=0
where ((z,u) = |z[§, + |u|% as before. (Note that Py.(-) does not have either a terminal cost nor

a terminal constraint; both are irrelevant since, if a solution to the problem exists, z%(k;z) — 0 as
k — 00.)
Thus, in the constrained optimisation problem Py (-) (3.1), solved at each time instant in model

predictive control, the terminal cost function used in this case is
(z) = 2T Pz (4.3)

where P > 0 is the (unique positive semi-definite) solution of the algebraic Riccati equation (3.13)-
(3.14).
The local controller is defined by
kp(z) = —Kz (4.4)

where K is computed from (3.14), and is, therefore, the optimal controller for the unconstrained infinite-
horizon problem P,.(-). The set X is usually taken to be the maximal output admissible set O, defined
in [3], i.e.

Ow i={z| KAz ecQ, j=0,1,...}. (4.5)

An interesting consequence of this choice for (F(-), Xy, r¢(-)) is that V2 (z) = F(z) for all z in Xy and
that V(z) = V2 (z) for all z € Xy such that the terminal constraint is not active (i.e. z°(N;z) lies in

the interior of X); if N is so chosen, the terminal constraint may be omitted from P (-).



4.2 New specification of (F(-), X}, ks(+))

It is the purpose of this paper to propose a larger terminal constraint set X, thus simplifying opti-
misation (or reducing N in those variants that omit the terminal constraint from the optimal control
problem but increase the horizon N until this constraint is satisfied). To this end we employ the results
described in §3.2; namely, the regional characterisation of the value function JV(z) (3.26) when the
optimal control law k,¢(z) (3.27) is employed for states x in a region Zy of the state space. We show in
this section that the new triple (F(-), Xr, ), obtained using these elements, satisfies conditions A1-A4
of Theorem 1 and constitutes an improvement over previous results (cf. §4.1).

It can be readily seen from (3.27) that the control law x,.(-) satisfies A2. Our problem then reduces
to find a set Xy that satisfies A1, is positively invariant under the control law £, (-) and in which JV(-)

is a local Lyapunov function.

Definition 1 Define the sets Xn, Yn, Zy C IR", for N > 1, as

Xn = A{z | Sn(AV (@) = 0} = {z | [KAN ' ¢ (2)] < An}, (4.6)
YN:ZYNQXNQDSZXoﬂ...XN_lﬂXNﬂ'DS, (47)

and
Zn =1z | ¥, (z) € Vv, k=0,1,2,...}, (4.8)

where the set Yn is as in (3.22) and Ds is a ‘design set’, used to ensure compactness of Yn. In the
case when Yv N Xn is compact, Ds can be chosen to be Dg = IR™; otherwise, Ds is chosen to be an
arbitrarily large compact set such that

Ox C Ds. (4.9)

The set Zy is a candidate for Xy, but for this use it is necessary that it be finitely determined. To

establish this we require:

Proposition 1 (i) The set Zx is positively invariant for the system x+ = ¢no(x). (i) Zn C Y. (iii)

Z N is compact and contains the origin in its interior.

Proof: (i) This follows from the definition (4.8) of Zy if Zy is not empty. Let ¢ > 0 be such that
the level set £ := {z | 27 Pz < ¢} C Oy N Yn; since both Oy, [3] and Y contain the origin in their
interiors and since P > 0, such a c exists. Since kp¢(z) = —Kzx and ¢,¢(z) = Axz in O, and since L
is positively invariant for 2t = Agx = ¢pe(x), it follows that £ C Zn. But £ contains the origin in its
interior (since P > 0). (ii) From definition (4.8), z € Zy implies = € Yy. (iii) Since Yy is compact and

®ne(+) is continuous, each set Wy, := {z | ¢¥ ,(z) € Yn}, k =0,1,...,is compact. Hence Zy is compact. B

Proposition 2 Zy C Zx.

Proof: Notice first, from (3.22) and (4.7), that Yy C Y;, i = 1,2,..., N. Tt follows from definition
(4.8) that € Zn implies ¢*,(z) € Yy, for all k. Hence, ¢F,(z) € Y;, for all k and i = 2,3,..., N, and
we conclude from (3.24) that = € Z. [ |

Proposition 3 For allz € Zy:
[N + (2, kne(z)) = 0. (4.10)



Proof: Making use of (3.11), (3.13), (3.14), (3.25), (3.26), (4.6), (4.7), and the fact that Zy C Yx
(Proposition 1) and Zy C Zy (Proposition 2), we obtain, for z € Zy,

N 4 @ ne(@) = T (Guel@) + € () — TV ()
TN (@) + R On (AN L g0(2))? — TV (2)
= ROoN(AY pne(z))? = 0.

|

Forall j =1,2,..., let W; be defined by

W; = {z | ¢%(x) € Vi fori=0,1,...,5 — 1 and ¢/ ,(z) € L} (4.11)
where L is defined in the proof of Proposition 1.
Proposition 4 There exists an integer i* such that Znx = Wy ; i.e., Zn is finitely determined.
Proof: (i) Let

max{JN(z) |z € Yn} =¢; < 00

;From (4.10) we have that

IN (2, kine (7)) = —€(2, kne(x)) < —lz|g < —e2lz?, Vaz e Zy. (4.12)

There exists a cg € (0, 00) such that

TN (@, kne(2)) < —c3,
for all # € ZnNclosure(£¢). Hence for all # € Zx there exists an integer i* < ¢ /c3 such that ¢%,(z) € L.
Hence z € Zy implies z € Wi-.
(ii) Suppose x € W;- so that ¢ ,(z) € Yy for i = 0,1,...,7* — 1 and ¢!, € £. Since £ is positively
invariant for t = ¢, (), ¢le($) €L CVYyforj=1i*i*+1,9+2,.... Hence z € Zy. [ |

;From the definition (4.8) it is clear that Zx is the mazimal positively invariant set in Yy for the
closed-loop system =+ = ¢,,¢(z) and, hence, Xy := Zy satisfies A3.
We now establish that O is a subset of Zy.

Proposition 5 O C Zx.
Proof: By definition Zy is the maximal positively invariant set in Yy for the closed-loop system
2t = @pe(x). The set Oy is also a positively invariant set for 2t = ¢,e(x) (since ¢ne(-) = ¢¢(+) in

Ow). It suffices, therefore, to establish that O, C Yu; i.e., that Oy C X; fori =1,2,...,N — 1 and
O C XN, since O, C Dg by design (cf. (4.9)). Assume, therefore, that = € O, so that

|KAlz| <1, j=0,1,... (4.13)



For any i € {1,2,...,N}

A% = (A-BR)AZ' = AAT" — BKAY!
= A(A-BK)A7? - BKAT' = A?A7%7 — ABKAL? - BKAL!
= A?(A-BK)AL® - ABKAL? - BKAL!
= APAL -~ A’BKAL® — ABKAL? - BKAL?

i—2
= AT'Ag - AIBKAL
7=0
which implies
i—2
KA™'Age = KAjo+Y KABKAL ' x (4.14)
7=0
;From (4.13) and (4.14), we obtain the inequality
i—2 ) )
KA Agz| < |KAgz|+) |[KAB||KA (4.15)
7j=0
i—2 )
< 1+ ) |KAB|=A; (4.16)
j=0

This implies z € X; fori = 1,2,..., N —1 (cf. (3.20)). To show that O, C Xy notice, from (4.6), that

Xn can be written as the union of three sets:

Iy =ViUThUVs, (4.17)
where
Vi = {z||Kz|<1}n{z||KAN"Agz| < An},
Vo = {z|Kz<-1}n{z||KAN Y4z + B)| < An},
V3 = {z|Kz>1}n{z||KAY'(Az — B)| < An}.
Then, it follows from (4.13) and (4.16) that z € O implies x € Vi and, hence, z € Xx. [ |

Example 1 In this example, the relative size of the sets Ouo, Yn and Zy is illustrated. Consider the
system zT = Az + Bu, y = Cx with

A:ll 0], B:lOA]’ C:[o 1],
04 1 0.08

which is the zero-order hold discretisation, with a sampling period of 0.4 sec., of the double integrator
L1 =u, T2 =21, Yy = x2. In Egs. (3.5)—(3.6) we take: Q = Irx> and R = 0.25. The matriz P and the
gain K were computed from (3.18)—(3.14).

In Figure 1 we show the set Yy, the maximal output admissible set Oy, and an ‘estimate’ of the set

Zn. In this example Yy is compact and Yy C Xn. Therefore, we take Dg = IR"™ in (4.7) and obtain

?N =Yy = ﬂi\;_ole



-2k 4

-2.5 -2 -15 -1 -0.5 0 0.5 1 15 2 25

Figure 1: Set boundaries for the example. (In the case of Zy an estimate obtained numerically is shown.
Note that Oy C Zn C Yn.)

The estimate of Zn was obtained numerically by gridding the set Y and checking the condition in
(4.8) for each point of the grid. In the implementation of the MPC algorithm, the test z°(N;x) € Xy is
performed ‘on-line’ (see §4.3 below) and, thus, an ‘explicit’ characterisation of Xy = Zn is not required.
We have included an ‘estimate’ of Zn in the figure for illustration purposes. As proven in Proposition 4,
the set Zn is finitely determined and, in this example, the test ¢F ,(z) € Yn (cf. (4.8)) is stopped for k
such that ¢fw(x) € O. As the figure shows, the new terminal constraint set Zy is considerably larger
than O . Py

We now state the main result of this paper.

Theorem 3 The triple (F(-), X}, k7(:)) where F(:) := JN(-), X := Zn and k¢ (-) := kne(-), satisfies
conditions A1-A4.

Proof: (i) It is established in Proposition 1 above that Xy := Zy is closed and contains the origin in
its interior, thus satisfying A1.

(ii) kf(-) := Kne(-) satisfies A2 by definition (cf. (3.27)).

(iii) That Xy := Zy is positively invariant for the system 2+ = f(z,k;(2)) = dne(z) is established in
Proposition 1 above.

(iv) We have shown in Proposition 3 (cf. (4.10)) that F(-) := JV(-) satisfies

[F + {](2, kne(z)) = 0

for all z € &}, thus satisfying A4. ]

10



4.3 Implementation of the MPC algorithm

Since Zn is not defined by linear inequalities and .JN(-) is not quadratic, problem Py (-) with F(-) =
IN(), Xr = Zn and k4(-) = Kne(-) is not a quadratic program. Indeed it is not even necessarily a
convex program since there is no guarantee that Zy is convex. (In general Zy is nonconvex, as Figure 1
illustrates.) However, because Zy is finitely specified, the variant of model predictive control in which
the terminal constraint is omitted from Px(-) and N is chosen (either a priori or online) to ensure
that the terminal constraint is satisfied (despite its omission from Py (-)) is easily implemented. The
resultant problem is convex because F'(-) is convex and positive definite and may be solved using convex

programming or, indeed, conventional non-linear programming (e.g., [8]).

5 Conclusions

We have shown how to obtain new terminal ingredients F'(-), Xy, x7(-) (for the optimal control problem
employed in model predictive control) that ensure closed-loop stability. The ingredients provide a larger
terminal constraint set than that provided by previous approaches thus facilitating online solution of
the optimal control problem. Examples show that the new constraint set Xy is larger than the output

admissible set O, conventionally employed.
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