
Enlarged terminal sets guaranteeing stability ofreeding horizon ontrolJos�e A. De Don�a� Mar��a M. Serony David Q. Maynez Graham C. GoodwinxAbstratIt is known that stability of a model preditive ontrol system is ensured if the terminal onditionsof the optimal ontrol problem solved online satisfy ertain riteria. The usual requirement is thatthe terminal ost funtion is a ontrol Lyapunov funtion de�ned on the terminal onstraint set.Conventionally the terminal ost funtion is hosen, when the system being ontrolled is linear, to bethe value funtion for the in�nite-horizon unonstrained optimal ontrol problem and the terminalonstraint set is hosen to be the output admissible set for the losed-loop system using the optimalunonstrained ontroller u = �Kx. The purpose of this paper is to relax these terminal onditionsthereby failitating online solution of the optimal ontrol problem. Using some reent results, wepresent alternative onditions that employ, as the terminal ost, the �nite-horizon ost resultingfrom a nonlinear ontroller u = �sat(Kx) and, as the terminal onstraint set, the set in whih thisontroller is optimal for the �nite-horizon onstrained optimal ontrol problem. It is shown thatthis solution provides a onsiderably larger terminal onstraint set.1 IntrodutionThis paper is onerned with losed-loop stability of onstrained linear systems when model preditiveontrol is employed. Model preditive ontrol is a form of ontrol in whih the urrent ontrol is obtainedby solving, at eah sampling instant, a �nite-horizon open-loop optimal ontrol problem and applyingthe �rst element of the optimal ontrol sequene so obtained. Obviously, model preditive ontrol ofonstrained systems is nonlinear so that stability is, in general, a nontrivial issue. After the pioneeringwork of Chen and Shaw [1℄, and of Keerthi and Gilbert [5℄, the value funtion of the �nite-horizon optimalontrol problem has been used, almost universally, as a Lyapunov funtion for analyzing losed-loopstability [7℄.Several `ingredients' of the online optimal ontrol problem diretly a�et losed-loop stability; theseare: the terminal ost F (�), the terminal onstraint set Xf (both of whih are employed in the optimalontrol problem solved online), and the loal ontroller �f (�) that ensures existene of feasible solutionsto the optimal ontrol problem (see, e.g., [1, 5, 7℄). Ideally, the terminal ost F (�) is the in�nite-horizonvalue funtion V 01(�) (for the onstrained optimal ontrol problem), in whih ase, the �nite-horizon value�Onderzoeksgroep SYSTeMS, Universiteit Gent, Tehnologiepark-Zwijnaarde 9, 9052 Zwijnaarde, Belgium. Email:dedona�montefiore.ulg.a.beyDepartamento de Eletr�onia, Universidad Naional de Rosario, Riobamba 245 bis, 2000 Rosario, Argentina. Email:marimar�eie.feia.unr.edu.arzDepartment of Eletrial and Eletroni Engineering, Imperial College of Siene , Tehnology and Mediine, London,UK. Email: d.mayne�i.a.ukxDepartment of Eletrial and Computer Engineering, The University of Newastle, Callaghan 2308, NSW, Australia.Email: eegg�eemail.newastle.edu.au 1



funtion is V 0N (�) = V 01(�). With this hoie, online optimisation is unneessary and the advantages ofan in�nite-horizon problem automatially arue. However, onstraints generally render this approahimpossible. Usually, then, Xf is hosen to be an appropriate neighbourhood of the origin in whihV 01(�) is exatly (or approximately) known, and F (�) is set equal to V 01(�) or its approximation. Whenthe system being ontrolled is linear, F (�) is often hosen (see [9, 10℄) to be the value funtion of thein�nite-horizon, unonstrained optimal ontrol problem, �f (�) is hosen to be the optimal ontroller(�f (x) = �Kx) for this problem, and Xf the maximal output admissible set O1 (de�ned by (4.5)below) for the losed-loop system using the loal ontroller �f (�). In this ase, V 01(x) = F (x) = xTPxfor all x 2 Xf . (P and K are given by the solution of an algebrai Riati equation, see (3.13), (3.14)below.)The purpose of this paper is to provide new terminal ingredients for model preditive ontrol of inputonstrained linear systems. The ingredients are an improvement over those previously used in that theterminal onstraint set Xf is stritly larger than O1, thus failitating the solution of the optimal ontrolproblem. To obtain the improved terminal onditions we employ reent results [2℄ that show that thenonlinear ontroller �n`(x) = �sat(Kx) is optimal in a region whih inludes the maximal outputadmissible set O1. The proposed terminal ost funtion F (�) is the �nite-horizon value funtion V 0N (�).The proposed terminal ost funtion F (�), while still onvex (thus ensuring solvability of the optimalontrol problem) is no longer quadrati (whih implies that the problem is not a quadrati program,and needs to be solved using onvex programming or onventional nonlinear programming). A previousresult [6℄ dealt with the ase of open-loop stable linear plants. The present paper extends the previousresult and is valid for arbitrary linear plants with onstrained single input.The struture of the paper is as follows. Some preliminary de�nitions and notation are introdued inx2. Model preditive ontrol is briey desribed in x3 where properties of the terminal onditions thatensure losed-loop stability are spei�ed. In that setion we also quote some reent results [2℄ that givea regional haraterisation of the value funtion and optimal ontroller for a �nite-horizon, onstrained,optimal ontrol problem; and the region in whih this haraterisation is valid. These results are usedin x4 to provide new, improved terminal onditions for the model preditive ontroller.2 De�nitions and notationThe system onsidered is x(k + 1) = Ax(k) +Bu(k) (2.1)or, more onisely, x+ = f(x; u) := Ax+Buwhere x 2 IRn and u 2 IR are, respetively, the urrent state and ontrol and x+ is the suessor state.The pair (A;B) is assumed ontrollable. The ontrol is required to satisfy the onstraintu(k) 2 
 (2.2)for all k, where 
 := [�1; 1℄.The following notation will be employed. The solution of (2.1) at time k, when the initial state is xat time i and the ontrol sequene is u, is xu(k;x; i); to simplify notation, xu(k;x) := xu(k;x; 0), i.e.the initial time is dropped when it is zero. For all � > 0, B� := fx j jxj � �g. For any set X in, say, IRn,X denotes the omplement of X (in IRn). IR+ := fx 2 IR j x > 0g and for eah � 2 IR+, the funtion2



sat�(�) is de�ned by sat�(u) := 8>><>>: u if juj � �� if u > ��� if u < �� (2.3)The funtion sat(�) is de�ned to be sat1(�). In the sequel Æ denotes onatenation, i.e. (aÆb)(x) := a(b(x)),a0(x) := x and, for all i = 1; 2; : : :, ai(x) := (ai�1 Æ a)(x) = (a Æ ai�1)(x).3 Model preditive ontrolIn model preditive ontrol, a �nite-horizon optimal ontrol problem PN (x) de�ned below is repeatedlysolved. Beause of time invariane, the initial time in the optimal ontrol problem may be taken to bezero. Thus PN (x) is de�ned by PN (x) : V 0N (x) = minu VN (x;u) (3.1)subjet to the ontrol onstraint u 2 
N (3.2)and the terminal onstraint x(N) 2 Xf (3.3)where u := fu(0); u(1); : : : ; u(N � 1)g (3.4)is a sequene of N ontrol ations,VN (x;u) := N�1Xk=0 `(x(k); u(k)) + F (x(N)) (3.5)`(x; u) := jxj2Q + juj2R (3.6)and x(k) := xu(k;x), k = 0; 1; : : : ; N . We assume that Q and R are positive de�nite, and denotejxj2Q := xTQx and similarly for juj2R. At event (x; k) (at state x, time k), problem PN (x) is solvedyielding the optimal ontrol sequeneu0(x) = fu0(0;x); u0(1;x); : : : ; u0(N � 1;x)g (3.7)the optimal state sequene x0(x) = fx0(0;x); x0(1;x); : : : ; x0(N ;x)g (3.8)(where x0(0;x) = x, the initial state) and the value funtionV 0N (x) = VN (x;u0(x)) (3.9)The �rst ontrol u0(0;x) is applied to the plant so that the (impliit) model preditive ontrol law isu = �N (x) := u0(0;x); (3.10)and the proedure is repeated as a new state beomes available.3



3.1 Closed loop stabilityIf F (�) and Xf are hosen appropriately (see, for example, [7℄), the reeding horizon ontrol law (3.10)an be shown to be stabilising. For any funtion � : IRn ! IRn, let ��(�) be de�ned by��(x; u) := �(f(x; u))� �(x) (3.11)where f(x; u) = Ax+Bu. We have [7℄:Theorem 1 Suppose the terminal ost funtion F : Xf ! IR, the terminal onstraint set Xf and theloal ontrol law �f : Xf ! IR satisfy:A1: Xf is losed and 0 2 Xf ,A2: �f (x) 2 
, 8x 2 Xf (ontrol onstraint satis�ed in Xf ),A3: Xf is positively invariant for the system, x+ = f(x; �f (x)),A4: [ �F + `℄(x; �f (x)) � 0, 8x 2 Xf (F (�) is a loal Lyapunov funtion).Then [ �V 0N + `℄(x; �N (x)) � 0for all x 2 XN , the (ompat, onvex) set of states steerable to Xf by an admissible ontrol in time Nor less. Also XN is positively invariant for the losed-loop system x+ = f(x; �N (x)) where �N(�) is themodel preditive ontrol law. uCorollary 1 Suppose Q > 0 and R > 0, that (F (�);Xf ; �f (�)) satisfy A1{A4 and that, in addition,there exists a �nite  suh that F (x) � jxj2 for all x 2 Xf . Then the origin is exponentially stable forthe losed-loop system x+ = f(x; �N (x)) with a region of attration XN .Proof: Sine Q > 0 it follows from Theorem 1 that there exists a �nite positive onstant a suh thatV 0N (x) � ajxj2; 8x 2 XNand �V 0N (x; �N (x)) � �ajxj2; 8x 2 XNNext V 0N (x) � F (x) for all x 2 Xf [4℄. This is easily shown. Let x be an arbitrary point in Xf and letfxf (k;x); k = 0; 1; 2; : : :g be the state sequene resulting from initial state x and ontroller �f (�). Then,by A4 F (x) � N�1Xk=0 `(xf (k;x); �f (xf (k;x))) + F (xf (N ;x))where (by A3) xf (k;x) 2 Xf for all k = 0; 1; : : : ; N and (by A2) �f (xf (k;x)) 2 
 for all k =0; 1; : : : ; N � 1. But, by optimality (sine xf (N ;x) 2 Xf ),V 0N (x) � N�1Xk=0 `(xf (k;x); �f (xf (k;x))) + F (xf (N ;x))Hene V 0N (x) � F (x) � jxj2 for all x 2 Xf . Exponential stability, with a region of attration XN ,follows.
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3.2 Regional haraterisation of the value funtionWe review here some reent results [2℄ that show that the nonlinear ontroller �n`(�) de�ned by�n`(x) := sat(�Kx) = �sat(Kx) (3.12)is optimal in a non-trivial region of the state-spae (in the sense that the region inludes the outputadmissible set, whih is de�ned in the sequel). In (3.12), the vetor K is the optimal gain for the unon-strained in�nite-horizon problem, whih is omputed from the (unique positive semi-de�nite) solutionof the algebrai Riati equation P = ATPA+Q�KT �RK; (3.13)where K := �R�1BTPA; �R := R+BTPB: (3.14)In the sequel we onsider both a linear ontroller u = �Kx and a nonlinear ontroller u = �sat(Kx).The losed-loop satis�es x+ = �`(x) when the linear ontroller is used and x+ = �n`(x) when thenonlinear ontroller is employed, where the mappings �` : IRn ! IRn and, �n` : IRn ! IRn are de�nedby �`(x) := AKx; AK := A�BK; (3.15)�n`(x) := Ax�B sat(Kx) (3.16)For all i 2 f1; 2; : : : ; Ng (N � 1 an integer) the funtion Æi(�) is de�ned byÆi(x) := Kx� sat�i(Kx) (3.17)where the saturation bounds �i are de�ned by�1 := 1 (3.18)�i := 1 + i�2Xj=0 jKAjBj; i = 2; 3; : : : ; N (3.19)The set X0 := IRn, and for eah i 2 f1; 2; : : : ; N � 1g, the set Xi � IRn is de�ned byXi := fx j Æi(Ai�1AKx) = 0g = fx j j �Kixj � �ig (3.20)where �Ki := KAi�1AK : (3.21)We also require the sets Yi (i 2 f1; 2; : : : ; Ng) and ZN de�ned byYi := X0 \X1 : : : \Xi�1; (3.22)Z1 := Y1 = IRn; (3.23)ZN := fx j �kn`(x) 2 YN�k; k = 0; 1; : : : ; N � 2g; for N � 2: (3.24)We an now state the main results of [2℄:Lemma 1 For any i 2 f1; 2; : : : ; N � 1g de�ne the funtions �n`(�) and Æi(�), Æi+1(�) as in (3.16) and(3.17) respetively, and the set Xi as in (3.20). Then:Æi(Ai�1�n`(x))2 = Æi+1(Aix)2; for all x 2 Xi: (3.25)u5



Theorem 2 The optimal value funtion V 0N (�) for problem PN with F (x) := xTPx and Xf := IRnsatis�es V 0N (x) = JN (x) := xTPx+ �R NXk=1 Æk(Ak�1x)2; 8x 2 ZN (3.26)and the optimal ontrol law �N(�) satis�es�N (x) = �n`(x) = �sat(Kx); 8x 2 ZN (3.27)where the set ZN is de�ned by (3.24). uSine the funtions x 7! Æk(Ak�1x)2 are onvex, so is the value funtion V 0N (�).4 Terminal onditions4.1 Standard spei�ation of (F (�);Xf ; �f(�))A triple (F (�);Xf ; �f (�)) satisfying A1{A4 and F (x) � jxj2 for all x 2 Xf ensures exponential stabilityas shown in x3.1 above. A useful hoie of terminal onditions [9, 10℄ for the problem onsidered is tohoose F (�) to be the value funtion V 0u(�) for the unonstrained in�nite-horizon optimal ontrol problemPu(x) for the same system (2.1), de�ned asPu(x) : V 0u(x) = minu Vu(x;u) (4.1)with ost Vu(x;u) := 1Xk=0 `(x(k); u(k)) (4.2)where `(x; u) = jxj2Q + juj2R as before. (Note that Pu(�) does not have either a terminal ost nora terminal onstraint; both are irrelevant sine, if a solution to the problem exists, x0(k;x) ! 0 ask !1.)Thus, in the onstrained optimisation problem PN(�) (3.1), solved at eah time instant in modelpreditive ontrol, the terminal ost funtion used in this ase isF (x) := V 0u(x) = xTPx (4.3)where P > 0 is the (unique positive semi-de�nite) solution of the algebrai Riati equation (3.13){(3.14).The loal ontroller is de�ned by �f (x) := �Kx (4.4)whereK is omputed from (3.14), and is, therefore, the optimal ontroller for the unonstrained in�nite-horizon problem Pu(�). The set Xf is usually taken to be the maximal output admissible set O1 de�nedin [3℄, i.e. O1 := fx j KAjKx 2 
; j = 0; 1; : : :g: (4.5)An interesting onsequene of this hoie for (F (�);Xf ; �f (�)) is that V 01(x) = F (x) for all x in Xf andthat V 0N (x) = V 01(x) for all x 2 XN suh that the terminal onstraint is not ative (i.e. x0(N ;x) lies inthe interior of Xf ); if N is so hosen, the terminal onstraint may be omitted from PN (�).6



4.2 New spei�ation of (F (�);Xf ; �f(�))It is the purpose of this paper to propose a larger terminal onstraint set Xf , thus simplifying opti-misation (or reduing N in those variants that omit the terminal onstraint from the optimal ontrolproblem but inrease the horizon N until this onstraint is satis�ed). To this end we employ the resultsdesribed in x3.2; namely, the regional haraterisation of the value funtion JN (x) (3.26) when theoptimal ontrol law �n`(x) (3.27) is employed for states x in a region ZN of the state spae. We show inthis setion that the new triple (F (�);Xf ; �f ), obtained using these elements, satis�es onditionsA1{A4of Theorem 1 and onstitutes an improvement over previous results (f. x4.1).It an be readily seen from (3.27) that the ontrol law �n`(�) satis�es A2. Our problem then reduesto �nd a set Xf that satis�es A1, is positively invariant under the ontrol law �n`(�) and in whih JN (�)is a loal Lyapunov funtion.De�nition 1 De�ne the sets �XN , �YN , �ZN � IRn, for N � 1, as�XN := fx j ÆN (AN�1�n`(x)) = 0g = fx j jKAN�1�n`(x)j � �Ng; (4.6)�YN := YN \ �XN \ DS = X0 \ : : : XN�1 \ �XN \ DS ; (4.7)and �ZN := fx j �kn`(x) 2 �YN ; k = 0; 1; 2; : : :g; (4.8)where the set YN is as in (3.22) and DS is a `design set', used to ensure ompatness of �YN . In thease when YN \ �XN is ompat, DS an be hosen to be DS = IRn; otherwise, DS is hosen to be anarbitrarily large ompat set suh that O1 � DS : (4.9)uThe set �ZN is a andidate for Xf , but for this use it is neessary that it be �nitely determined. Toestablish this we require:Proposition 1 (i) The set �ZN is positively invariant for the system x+ = �n`(x). (ii) �ZN � �YN . (iii)�ZN is ompat and ontains the origin in its interior.Proof: (i) This follows from the de�nition (4.8) of �ZN if �ZN is not empty. Let  > 0 be suh thatthe level set L := fx j xTPx � g � O1 \ �YN ; sine both O1 [3℄ and �YN ontain the origin in theirinteriors and sine P > 0, suh a  exists. Sine �n`(x) = �Kx and �n`(x) = AKx in O1, and sine Lis positively invariant for x+ = AKx = �n`(x), it follows that L � �ZN . But L ontains the origin in itsinterior (sine P > 0). (ii) From de�nition (4.8), x 2 �ZN implies x 2 �YN . (iii) Sine �YN is ompat and�n`(�) is ontinuous, eah setWk := fx j �kn`(x) 2 �YNg, k = 0; 1; : : :, is ompat. Hene �ZN is ompat.Proposition 2 �ZN � ZN .Proof: Notie �rst, from (3.22) and (4.7), that �YN � Yi, i = 1; 2; : : : ; N . It follows from de�nition(4.8) that x 2 �ZN implies �kn`(x) 2 �YN , for all k. Hene, �kn`(x) 2 Yi, for all k and i = 2; 3; : : : ; N , andwe onlude from (3.24) that x 2 ZN .Proposition 3 For all x 2 �ZN : [ �JN + `℄(x; �n`(x)) = 0: (4.10)7



Proof: Making use of (3.11), (3.13), (3.14), (3.25), (3.26), (4.6), (4.7), and the fat that �ZN � �YN(Proposition 1) and �ZN � ZN (Proposition 2), we obtain, for x 2 �ZN ,[ �JN + `℄(x; �n`(x)) = JN (�n`(x)) + `(x; �n`(x)) � JN (x)= JN (x) + �R ÆN (AN�1�n`(x))2 � JN (x)= �R ÆN (AN�1�n`(x))2 = 0:For all j = 1; 2; : : :, let Wj be de�ned byWj := fx j �in`(x) 2 �YN for i = 0; 1; : : : ; j � 1 and �jn`(x) 2 Lg (4.11)where L is de�ned in the proof of Proposition 1.Proposition 4 There exists an integer i? suh that �ZN =Wi? ; i.e., �ZN is �nitely determined.Proof: (i) Let maxfJN (x) j x 2 �YNg = 1 <1>From (4.10) we have that�JN (x; �n`(x)) = �`(x; �n`(x)) � �jxj2Q � �2jxj2; 8 x 2 �ZN : (4.12)There exists a 3 2 (0;1) suh that �JN (x; �n`(x)) � �3;for all x 2 �ZN\losure(L). Hene for all x 2 �ZN there exists an integer i? � 1=3 suh that �i?n`(x) 2 L.Hene x 2 �ZN implies x 2 Wi? .(ii) Suppose x 2 Wi? so that �in`(x) 2 �YN for i = 0; 1; : : : ; i? � 1 and �i?n` 2 L. Sine L is positivelyinvariant for x+ = �n`(x), �jn`(x) 2 L � �YN for j = i?; i? + 1; i? + 2; : : :. Hene x 2 �ZN .>From the de�nition (4.8) it is lear that �ZN is the maximal positively invariant set in �YN for thelosed-loop system x+ = �n`(x) and, hene, Xf := �ZN satis�es A3.We now establish that O1 is a subset of �ZN .Proposition 5 O1 � �ZN .Proof: By de�nition �ZN is the maximal positively invariant set in �YN for the losed-loop systemx+ = �n`(x). The set O1 is also a positively invariant set for x+ = �n`(x) (sine �n`(�) = �`(�) inO1). It suÆes, therefore, to establish that O1 � �YN ; i.e., that O1 � Xi for i = 1; 2; : : : ; N � 1 andO1 � �XN , sine O1 � DS by design (f. (4.9)). Assume, therefore, that x 2 O1, so thatjKAjKxj � 1; j = 0; 1; : : : (4.13)
8



For any i 2 f1; 2; : : : ; NgAiK = (A�BK)Ai�1K = AAi�1K �BKAi�1K= A(A�BK)Ai�2K �BKAi�1K = A2Ai�2K �ABKAi�2K �BKAi�1K= A2(A�BK)Ai�3K �ABKAi�2K � BKAi�1K= A3Ai�3K �A2BKAi�3K �ABKAi�2K �BKAi�1K...= Ai�1AK � i�2Xj=0AjBKAi�1�jKwhih implies KAi�1AKx = KAiKx+ i�2Xj=0KAjBKAi�1�jK x (4.14)>From (4.13) and (4.14), we obtain the inequalityjKAi�1AKxj � jKAiKxj+ i�2Xj=0 jKAjBjjKAi�1�jK xj (4.15)� 1 + i�2Xj=0 jKAjBj = �i (4.16)This implies x 2 Xi for i = 1; 2; : : : ; N � 1 (f. (3.20)). To show that O1 � �XN notie, from (4.6), that�XN an be written as the union of three sets:�XN = V1 [ V2 [ V3; (4.17)where V1 := fx j jKxj � 1g \ fx j jKAN�1AKxj � �Ng;V2 := fx j Kx < �1g \ fx j jKAN�1(Ax +B)j � �Ng;V3 := fx j Kx > 1g \ fx j jKAN�1(Ax�B)j � �Ng:Then, it follows from (4.13) and (4.16) that x 2 O1 implies x 2 V1 and, hene, x 2 �XN .Example 1 In this example, the relative size of the sets O1, �YN and �ZN is illustrated. Consider thesystem x+ = Ax+Bu, y = Cx withA = " 1 00:4 1# ; B = " 0:40:08# ; C = h0 1i ;whih is the zero-order hold disretisation, with a sampling period of 0:4 se., of the double integrator_x1 = u, _x2 = x1, y = x2. In Eqs. (3.5){(3.6) we take: Q = I2�2 and R = 0:25. The matrix P and thegain K were omputed from (3.13){(3.14).In Figure 1 we show the set �YN , the maximal output admissible set O1 and an `estimate' of the set�ZN . In this example YN is ompat and YN � �XN . Therefore, we take DS = IRn in (4.7) and obtain�YN = YN = \N�1i=0 Xi:9
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Figure 1: Set boundaries for the example. (In the ase of �ZN an estimate obtained numerially is shown.Note that O1 � �ZN � �YN .)The estimate of �ZN was obtained numerially by gridding the set �YN and heking the ondition in(4.8) for eah point of the grid. In the implementation of the MPC algorithm, the test x0(N ;x) 2 Xf isperformed `on-line' (see x4.3 below) and, thus, an `expliit' haraterisation of Xf := �ZN is not required.We have inluded an `estimate' of �ZN in the �gure for illustration purposes. As proven in Proposition 4,the set �ZN is �nitely determined and, in this example, the test �kn`(x) 2 �YN (f. (4.8)) is stopped for ksuh that �kn`(x) 2 O1. As the �gure shows, the new terminal onstraint set �ZN is onsiderably largerthan O1. uWe now state the main result of this paper.Theorem 3 The triple (F (�);Xf ; �f (�)) where F (�) := JN (�), Xf := �ZN and �f (�) := �n`(�), satis�esonditions A1{A4.Proof: (i) It is established in Proposition 1 above that Xf := �ZN is losed and ontains the origin inits interior, thus satisfying A1.(ii) �f (�) := �n`(�) satis�es A2 by de�nition (f. (3.27)).(iii) That Xf := �ZN is positively invariant for the system x+ = f(x; �f (x)) = �n`(x) is established inProposition 1 above.(iv) We have shown in Proposition 3 (f. (4.10)) that F (�) := JN (�) satis�es[ �F + `℄(x; �n`(x)) = 0for all x 2 Xf , thus satisfying A4.
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4.3 Implementation of the MPC algorithmSine �ZN is not de�ned by linear inequalities and JN (�) is not quadrati, problem PN(�) with F (�) =JN (�), Xf = �ZN and �f (�) = �n`(�) is not a quadrati program. Indeed it is not even neessarily aonvex program sine there is no guarantee that �ZN is onvex. (In general �ZN is nononvex, as Figure 1illustrates.) However, beause �ZN is �nitely spei�ed, the variant of model preditive ontrol in whihthe terminal onstraint is omitted from PN (�) and N is hosen (either a priori or online) to ensurethat the terminal onstraint is satis�ed (despite its omission from PN (�)) is easily implemented. Theresultant problem is onvex beause F (�) is onvex and positive de�nite and may be solved using onvexprogramming or, indeed, onventional non-linear programming (e.g., [8℄).5 ConlusionsWe have shown how to obtain new terminal ingredients F (�), Xf , �f (�) (for the optimal ontrol problememployed in model preditive ontrol) that ensure losed-loop stability. The ingredients provide a largerterminal onstraint set than that provided by previous approahes thus failitating online solution ofthe optimal ontrol problem. Examples show that the new onstraint set Xf is larger than the outputadmissible set O1 onventionally employed.Referenes[1℄ C.C. Chen and L. Shaw, On reeding horizon feedbak ontrol, Automatia 18 (1982), pp. 349{352.[2℄ J.A. De Don�a and G.C. Goodwin, Elluidation of the state-spae regions wherein model preditiveontrol and anti-windup strategies ahieve idential ontrol poliies, in: Proeedings of the 2000Amerian Control Conferene, Chiago, Illinois, 2000.[3℄ E.G. Gilbert and K.T. Tan, Linear systems with state and ontrol onstraints: The theory andappliation of maximal output admissible sets, IEEE Transations on Automati Control, AC-36(1991), pp. 1008{1020.[4℄ A. Jadbabaie, J. Yu and J. Hauser, Unonstrained reeding horizon ontrol of nonlinear systems.Submitted to: IEEE Transations on Automati Control.[5℄ S.S. Keerthi and E.G. Gilbert, Optimal, in�nite horizon feedbak laws for a general lass of on-strained disrete time systems: Stability and moving-horizon approximations, Journal of Optimiza-tion Theory and Appliations, 57 (1988), pp. 265{293.[6℄ D.Q. Mayne, J.A. De Don�a and G.C. Goodwin, Improved stabilising onditions for model preditiveontrol, in: Proeedings of the 39th IEEE Conferene on Deision and Control, Sydney, NSW, 2000,pp. 172{177.[7℄ D.Q. Mayne, J.B. Rawlings, C.V. Rao and P.O.M. Sokaert, Constrained model preditive ontrol:Stability and optimality, Automatia 36 (2000), pp. 789{814.[8℄ E. Polak, Optimization: Algorithms and Consistent Approximations, Springer Verlag, New York,1997. 11
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