
Enlarged terminal sets guaranteeing stability ofre
eding horizon 
ontrolJos�e A. De Don�a� Mar��a M. Serony David Q. Maynez Graham C. GoodwinxAbstra
tIt is known that stability of a model predi
tive 
ontrol system is ensured if the terminal 
onditionsof the optimal 
ontrol problem solved online satisfy 
ertain 
riteria. The usual requirement is thatthe terminal 
ost fun
tion is a 
ontrol Lyapunov fun
tion de�ned on the terminal 
onstraint set.Conventionally the terminal 
ost fun
tion is 
hosen, when the system being 
ontrolled is linear, to bethe value fun
tion for the in�nite-horizon un
onstrained optimal 
ontrol problem and the terminal
onstraint set is 
hosen to be the output admissible set for the 
losed-loop system using the optimalun
onstrained 
ontroller u = �Kx. The purpose of this paper is to relax these terminal 
onditionsthereby fa
ilitating online solution of the optimal 
ontrol problem. Using some re
ent results, wepresent alternative 
onditions that employ, as the terminal 
ost, the �nite-horizon 
ost resultingfrom a nonlinear 
ontroller u = �sat(Kx) and, as the terminal 
onstraint set, the set in whi
h this
ontroller is optimal for the �nite-horizon 
onstrained optimal 
ontrol problem. It is shown thatthis solution provides a 
onsiderably larger terminal 
onstraint set.1 Introdu
tionThis paper is 
on
erned with 
losed-loop stability of 
onstrained linear systems when model predi
tive
ontrol is employed. Model predi
tive 
ontrol is a form of 
ontrol in whi
h the 
urrent 
ontrol is obtainedby solving, at ea
h sampling instant, a �nite-horizon open-loop optimal 
ontrol problem and applyingthe �rst element of the optimal 
ontrol sequen
e so obtained. Obviously, model predi
tive 
ontrol of
onstrained systems is nonlinear so that stability is, in general, a nontrivial issue. After the pioneeringwork of Chen and Shaw [1℄, and of Keerthi and Gilbert [5℄, the value fun
tion of the �nite-horizon optimal
ontrol problem has been used, almost universally, as a Lyapunov fun
tion for analyzing 
losed-loopstability [7℄.Several `ingredients' of the online optimal 
ontrol problem dire
tly a�e
t 
losed-loop stability; theseare: the terminal 
ost F (�), the terminal 
onstraint set Xf (both of whi
h are employed in the optimal
ontrol problem solved online), and the lo
al 
ontroller �f (�) that ensures existen
e of feasible solutionsto the optimal 
ontrol problem (see, e.g., [1, 5, 7℄). Ideally, the terminal 
ost F (�) is the in�nite-horizonvalue fun
tion V 01(�) (for the 
onstrained optimal 
ontrol problem), in whi
h 
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fun
tion is V 0N (�) = V 01(�). With this 
hoi
e, online optimisation is unne
essary and the advantages ofan in�nite-horizon problem automati
ally a

rue. However, 
onstraints generally render this approa
himpossible. Usually, then, Xf is 
hosen to be an appropriate neighbourhood of the origin in whi
hV 01(�) is exa
tly (or approximately) known, and F (�) is set equal to V 01(�) or its approximation. Whenthe system being 
ontrolled is linear, F (�) is often 
hosen (see [9, 10℄) to be the value fun
tion of thein�nite-horizon, un
onstrained optimal 
ontrol problem, �f (�) is 
hosen to be the optimal 
ontroller(�f (x) = �Kx) for this problem, and Xf the maximal output admissible set O1 (de�ned by (4.5)below) for the 
losed-loop system using the lo
al 
ontroller �f (�). In this 
ase, V 01(x) = F (x) = xTPxfor all x 2 Xf . (P and K are given by the solution of an algebrai
 Ri

ati equation, see (3.13), (3.14)below.)The purpose of this paper is to provide new terminal ingredients for model predi
tive 
ontrol of input
onstrained linear systems. The ingredients are an improvement over those previously used in that theterminal 
onstraint set Xf is stri
tly larger than O1, thus fa
ilitating the solution of the optimal 
ontrolproblem. To obtain the improved terminal 
onditions we employ re
ent results [2℄ that show that thenonlinear 
ontroller �n`(x) = �sat(Kx) is optimal in a region whi
h in
ludes the maximal outputadmissible set O1. The proposed terminal 
ost fun
tion F (�) is the �nite-horizon value fun
tion V 0N (�).The proposed terminal 
ost fun
tion F (�), while still 
onvex (thus ensuring solvability of the optimal
ontrol problem) is no longer quadrati
 (whi
h implies that the problem is not a quadrati
 program,and needs to be solved using 
onvex programming or 
onventional nonlinear programming). A previousresult [6℄ dealt with the 
ase of open-loop stable linear plants. The present paper extends the previousresult and is valid for arbitrary linear plants with 
onstrained single input.The stru
ture of the paper is as follows. Some preliminary de�nitions and notation are introdu
ed inx2. Model predi
tive 
ontrol is brie
y des
ribed in x3 where properties of the terminal 
onditions thatensure 
losed-loop stability are spe
i�ed. In that se
tion we also quote some re
ent results [2℄ that givea regional 
hara
terisation of the value fun
tion and optimal 
ontroller for a �nite-horizon, 
onstrained,optimal 
ontrol problem; and the region in whi
h this 
hara
terisation is valid. These results are usedin x4 to provide new, improved terminal 
onditions for the model predi
tive 
ontroller.2 De�nitions and notationThe system 
onsidered is x(k + 1) = Ax(k) +Bu(k) (2.1)or, more 
on
isely, x+ = f(x; u) := Ax+Buwhere x 2 IRn and u 2 IR are, respe
tively, the 
urrent state and 
ontrol and x+ is the su

essor state.The pair (A;B) is assumed 
ontrollable. The 
ontrol is required to satisfy the 
onstraintu(k) 2 
 (2.2)for all k, where 
 := [�1; 1℄.The following notation will be employed. The solution of (2.1) at time k, when the initial state is xat time i and the 
ontrol sequen
e is u, is xu(k;x; i); to simplify notation, xu(k;x) := xu(k;x; 0), i.e.the initial time is dropped when it is zero. For all � > 0, B� := fx j jxj � �g. For any set X in, say, IRn,X
 denotes the 
omplement of X (in IRn). IR+ := fx 2 IR j x > 0g and for ea
h � 2 IR+, the fun
tion2



sat�(�) is de�ned by sat�(u) := 8>><>>: u if juj � �� if u > ��� if u < �� (2.3)The fun
tion sat(�) is de�ned to be sat1(�). In the sequel Æ denotes 
on
atenation, i.e. (aÆb)(x) := a(b(x)),a0(x) := x and, for all i = 1; 2; : : :, ai(x) := (ai�1 Æ a)(x) = (a Æ ai�1)(x).3 Model predi
tive 
ontrolIn model predi
tive 
ontrol, a �nite-horizon optimal 
ontrol problem PN (x) de�ned below is repeatedlysolved. Be
ause of time invarian
e, the initial time in the optimal 
ontrol problem may be taken to bezero. Thus PN (x) is de�ned by PN (x) : V 0N (x) = minu VN (x;u) (3.1)subje
t to the 
ontrol 
onstraint u 2 
N (3.2)and the terminal 
onstraint x(N) 2 Xf (3.3)where u := fu(0); u(1); : : : ; u(N � 1)g (3.4)is a sequen
e of N 
ontrol a
tions,VN (x;u) := N�1Xk=0 `(x(k); u(k)) + F (x(N)) (3.5)`(x; u) := jxj2Q + juj2R (3.6)and x(k) := xu(k;x), k = 0; 1; : : : ; N . We assume that Q and R are positive de�nite, and denotejxj2Q := xTQx and similarly for juj2R. At event (x; k) (at state x, time k), problem PN (x) is solvedyielding the optimal 
ontrol sequen
eu0(x) = fu0(0;x); u0(1;x); : : : ; u0(N � 1;x)g (3.7)the optimal state sequen
e x0(x) = fx0(0;x); x0(1;x); : : : ; x0(N ;x)g (3.8)(where x0(0;x) = x, the initial state) and the value fun
tionV 0N (x) = VN (x;u0(x)) (3.9)The �rst 
ontrol u0(0;x) is applied to the plant so that the (impli
it) model predi
tive 
ontrol law isu = �N (x) := u0(0;x); (3.10)and the pro
edure is repeated as a new state be
omes available.3



3.1 Closed loop stabilityIf F (�) and Xf are 
hosen appropriately (see, for example, [7℄), the re
eding horizon 
ontrol law (3.10)
an be shown to be stabilising. For any fun
tion � : IRn ! IRn, let ��(�) be de�ned by��(x; u) := �(f(x; u))� �(x) (3.11)where f(x; u) = Ax+Bu. We have [7℄:Theorem 1 Suppose the terminal 
ost fun
tion F : Xf ! IR, the terminal 
onstraint set Xf and thelo
al 
ontrol law �f : Xf ! IR satisfy:A1: Xf is 
losed and 0 2 Xf ,A2: �f (x) 2 
, 8x 2 Xf (
ontrol 
onstraint satis�ed in Xf ),A3: Xf is positively invariant for the system, x+ = f(x; �f (x)),A4: [ �F + `℄(x; �f (x)) � 0, 8x 2 Xf (F (�) is a lo
al Lyapunov fun
tion).Then [ �V 0N + `℄(x; �N (x)) � 0for all x 2 XN , the (
ompa
t, 
onvex) set of states steerable to Xf by an admissible 
ontrol in time Nor less. Also XN is positively invariant for the 
losed-loop system x+ = f(x; �N (x)) where �N(�) is themodel predi
tive 
ontrol law. uCorollary 1 Suppose Q > 0 and R > 0, that (F (�);Xf ; �f (�)) satisfy A1{A4 and that, in addition,there exists a �nite 
 su
h that F (x) � 
jxj2 for all x 2 Xf . Then the origin is exponentially stable forthe 
losed-loop system x+ = f(x; �N (x)) with a region of attra
tion XN .Proof: Sin
e Q > 0 it follows from Theorem 1 that there exists a �nite positive 
onstant a su
h thatV 0N (x) � ajxj2; 8x 2 XNand �V 0N (x; �N (x)) � �ajxj2; 8x 2 XNNext V 0N (x) � F (x) for all x 2 Xf [4℄. This is easily shown. Let x be an arbitrary point in Xf and letfxf (k;x); k = 0; 1; 2; : : :g be the state sequen
e resulting from initial state x and 
ontroller �f (�). Then,by A4 F (x) � N�1Xk=0 `(xf (k;x); �f (xf (k;x))) + F (xf (N ;x))where (by A3) xf (k;x) 2 Xf for all k = 0; 1; : : : ; N and (by A2) �f (xf (k;x)) 2 
 for all k =0; 1; : : : ; N � 1. But, by optimality (sin
e xf (N ;x) 2 Xf ),V 0N (x) � N�1Xk=0 `(xf (k;x); �f (xf (k;x))) + F (xf (N ;x))Hen
e V 0N (x) � F (x) � 
jxj2 for all x 2 Xf . Exponential stability, with a region of attra
tion XN ,follows.
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3.2 Regional 
hara
terisation of the value fun
tionWe review here some re
ent results [2℄ that show that the nonlinear 
ontroller �n`(�) de�ned by�n`(x) := sat(�Kx) = �sat(Kx) (3.12)is optimal in a non-trivial region of the state-spa
e (in the sense that the region in
ludes the outputadmissible set, whi
h is de�ned in the sequel). In (3.12), the ve
tor K is the optimal gain for the un
on-strained in�nite-horizon problem, whi
h is 
omputed from the (unique positive semi-de�nite) solutionof the algebrai
 Ri

ati equation P = ATPA+Q�KT �RK; (3.13)where K := �R�1BTPA; �R := R+BTPB: (3.14)In the sequel we 
onsider both a linear 
ontroller u = �Kx and a nonlinear 
ontroller u = �sat(Kx).The 
losed-loop satis�es x+ = �`(x) when the linear 
ontroller is used and x+ = �n`(x) when thenonlinear 
ontroller is employed, where the mappings �` : IRn ! IRn and, �n` : IRn ! IRn are de�nedby �`(x) := AKx; AK := A�BK; (3.15)�n`(x) := Ax�B sat(Kx) (3.16)For all i 2 f1; 2; : : : ; Ng (N � 1 an integer) the fun
tion Æi(�) is de�ned byÆi(x) := Kx� sat�i(Kx) (3.17)where the saturation bounds �i are de�ned by�1 := 1 (3.18)�i := 1 + i�2Xj=0 jKAjBj; i = 2; 3; : : : ; N (3.19)The set X0 := IRn, and for ea
h i 2 f1; 2; : : : ; N � 1g, the set Xi � IRn is de�ned byXi := fx j Æi(Ai�1AKx) = 0g = fx j j �Kixj � �ig (3.20)where �Ki := KAi�1AK : (3.21)We also require the sets Yi (i 2 f1; 2; : : : ; Ng) and ZN de�ned byYi := X0 \X1 : : : \Xi�1; (3.22)Z1 := Y1 = IRn; (3.23)ZN := fx j �kn`(x) 2 YN�k; k = 0; 1; : : : ; N � 2g; for N � 2: (3.24)We 
an now state the main results of [2℄:Lemma 1 For any i 2 f1; 2; : : : ; N � 1g de�ne the fun
tions �n`(�) and Æi(�), Æi+1(�) as in (3.16) and(3.17) respe
tively, and the set Xi as in (3.20). Then:Æi(Ai�1�n`(x))2 = Æi+1(Aix)2; for all x 2 Xi: (3.25)u5



Theorem 2 The optimal value fun
tion V 0N (�) for problem PN with F (x) := xTPx and Xf := IRnsatis�es V 0N (x) = JN (x) := xTPx+ �R NXk=1 Æk(Ak�1x)2; 8x 2 ZN (3.26)and the optimal 
ontrol law �N(�) satis�es�N (x) = �n`(x) = �sat(Kx); 8x 2 ZN (3.27)where the set ZN is de�ned by (3.24). uSin
e the fun
tions x 7! Æk(Ak�1x)2 are 
onvex, so is the value fun
tion V 0N (�).4 Terminal 
onditions4.1 Standard spe
i�
ation of (F (�);Xf ; �f(�))A triple (F (�);Xf ; �f (�)) satisfying A1{A4 and F (x) � 
jxj2 for all x 2 Xf ensures exponential stabilityas shown in x3.1 above. A useful 
hoi
e of terminal 
onditions [9, 10℄ for the problem 
onsidered is to
hoose F (�) to be the value fun
tion V 0u
(�) for the un
onstrained in�nite-horizon optimal 
ontrol problemPu
(x) for the same system (2.1), de�ned asPu
(x) : V 0u
(x) = minu Vu
(x;u) (4.1)with 
ost Vu
(x;u) := 1Xk=0 `(x(k); u(k)) (4.2)where `(x; u) = jxj2Q + juj2R as before. (Note that Pu
(�) does not have either a terminal 
ost nora terminal 
onstraint; both are irrelevant sin
e, if a solution to the problem exists, x0(k;x) ! 0 ask !1.)Thus, in the 
onstrained optimisation problem PN(�) (3.1), solved at ea
h time instant in modelpredi
tive 
ontrol, the terminal 
ost fun
tion used in this 
ase isF (x) := V 0u
(x) = xTPx (4.3)where P > 0 is the (unique positive semi-de�nite) solution of the algebrai
 Ri

ati equation (3.13){(3.14).The lo
al 
ontroller is de�ned by �f (x) := �Kx (4.4)whereK is 
omputed from (3.14), and is, therefore, the optimal 
ontroller for the un
onstrained in�nite-horizon problem Pu
(�). The set Xf is usually taken to be the maximal output admissible set O1 de�nedin [3℄, i.e. O1 := fx j KAjKx 2 
; j = 0; 1; : : :g: (4.5)An interesting 
onsequen
e of this 
hoi
e for (F (�);Xf ; �f (�)) is that V 01(x) = F (x) for all x in Xf andthat V 0N (x) = V 01(x) for all x 2 XN su
h that the terminal 
onstraint is not a
tive (i.e. x0(N ;x) lies inthe interior of Xf ); if N is so 
hosen, the terminal 
onstraint may be omitted from PN (�).6



4.2 New spe
i�
ation of (F (�);Xf ; �f(�))It is the purpose of this paper to propose a larger terminal 
onstraint set Xf , thus simplifying opti-misation (or redu
ing N in those variants that omit the terminal 
onstraint from the optimal 
ontrolproblem but in
rease the horizon N until this 
onstraint is satis�ed). To this end we employ the resultsdes
ribed in x3.2; namely, the regional 
hara
terisation of the value fun
tion JN (x) (3.26) when theoptimal 
ontrol law �n`(x) (3.27) is employed for states x in a region ZN of the state spa
e. We show inthis se
tion that the new triple (F (�);Xf ; �f ), obtained using these elements, satis�es 
onditionsA1{A4of Theorem 1 and 
onstitutes an improvement over previous results (
f. x4.1).It 
an be readily seen from (3.27) that the 
ontrol law �n`(�) satis�es A2. Our problem then redu
esto �nd a set Xf that satis�es A1, is positively invariant under the 
ontrol law �n`(�) and in whi
h JN (�)is a lo
al Lyapunov fun
tion.De�nition 1 De�ne the sets �XN , �YN , �ZN � IRn, for N � 1, as�XN := fx j ÆN (AN�1�n`(x)) = 0g = fx j jKAN�1�n`(x)j � �Ng; (4.6)�YN := YN \ �XN \ DS = X0 \ : : : XN�1 \ �XN \ DS ; (4.7)and �ZN := fx j �kn`(x) 2 �YN ; k = 0; 1; 2; : : :g; (4.8)where the set YN is as in (3.22) and DS is a `design set', used to ensure 
ompa
tness of �YN . In the
ase when YN \ �XN is 
ompa
t, DS 
an be 
hosen to be DS = IRn; otherwise, DS is 
hosen to be anarbitrarily large 
ompa
t set su
h that O1 � DS : (4.9)uThe set �ZN is a 
andidate for Xf , but for this use it is ne
essary that it be �nitely determined. Toestablish this we require:Proposition 1 (i) The set �ZN is positively invariant for the system x+ = �n`(x). (ii) �ZN � �YN . (iii)�ZN is 
ompa
t and 
ontains the origin in its interior.Proof: (i) This follows from the de�nition (4.8) of �ZN if �ZN is not empty. Let 
 > 0 be su
h thatthe level set L := fx j xTPx � 
g � O1 \ �YN ; sin
e both O1 [3℄ and �YN 
ontain the origin in theirinteriors and sin
e P > 0, su
h a 
 exists. Sin
e �n`(x) = �Kx and �n`(x) = AKx in O1, and sin
e Lis positively invariant for x+ = AKx = �n`(x), it follows that L � �ZN . But L 
ontains the origin in itsinterior (sin
e P > 0). (ii) From de�nition (4.8), x 2 �ZN implies x 2 �YN . (iii) Sin
e �YN is 
ompa
t and�n`(�) is 
ontinuous, ea
h setWk := fx j �kn`(x) 2 �YNg, k = 0; 1; : : :, is 
ompa
t. Hen
e �ZN is 
ompa
t.Proposition 2 �ZN � ZN .Proof: Noti
e �rst, from (3.22) and (4.7), that �YN � Yi, i = 1; 2; : : : ; N . It follows from de�nition(4.8) that x 2 �ZN implies �kn`(x) 2 �YN , for all k. Hen
e, �kn`(x) 2 Yi, for all k and i = 2; 3; : : : ; N , andwe 
on
lude from (3.24) that x 2 ZN .Proposition 3 For all x 2 �ZN : [ �JN + `℄(x; �n`(x)) = 0: (4.10)7



Proof: Making use of (3.11), (3.13), (3.14), (3.25), (3.26), (4.6), (4.7), and the fa
t that �ZN � �YN(Proposition 1) and �ZN � ZN (Proposition 2), we obtain, for x 2 �ZN ,[ �JN + `℄(x; �n`(x)) = JN (�n`(x)) + `(x; �n`(x)) � JN (x)= JN (x) + �R ÆN (AN�1�n`(x))2 � JN (x)= �R ÆN (AN�1�n`(x))2 = 0:For all j = 1; 2; : : :, let Wj be de�ned byWj := fx j �in`(x) 2 �YN for i = 0; 1; : : : ; j � 1 and �jn`(x) 2 Lg (4.11)where L is de�ned in the proof of Proposition 1.Proposition 4 There exists an integer i? su
h that �ZN =Wi? ; i.e., �ZN is �nitely determined.Proof: (i) Let maxfJN (x) j x 2 �YNg = 
1 <1>From (4.10) we have that�JN (x; �n`(x)) = �`(x; �n`(x)) � �jxj2Q � �
2jxj2; 8 x 2 �ZN : (4.12)There exists a 
3 2 (0;1) su
h that �JN (x; �n`(x)) � �
3;for all x 2 �ZN\
losure(L
). Hen
e for all x 2 �ZN there exists an integer i? � 
1=
3 su
h that �i?n`(x) 2 L.Hen
e x 2 �ZN implies x 2 Wi? .(ii) Suppose x 2 Wi? so that �in`(x) 2 �YN for i = 0; 1; : : : ; i? � 1 and �i?n` 2 L. Sin
e L is positivelyinvariant for x+ = �n`(x), �jn`(x) 2 L � �YN for j = i?; i? + 1; i? + 2; : : :. Hen
e x 2 �ZN .>From the de�nition (4.8) it is 
lear that �ZN is the maximal positively invariant set in �YN for the
losed-loop system x+ = �n`(x) and, hen
e, Xf := �ZN satis�es A3.We now establish that O1 is a subset of �ZN .Proposition 5 O1 � �ZN .Proof: By de�nition �ZN is the maximal positively invariant set in �YN for the 
losed-loop systemx+ = �n`(x). The set O1 is also a positively invariant set for x+ = �n`(x) (sin
e �n`(�) = �`(�) inO1). It suÆ
es, therefore, to establish that O1 � �YN ; i.e., that O1 � Xi for i = 1; 2; : : : ; N � 1 andO1 � �XN , sin
e O1 � DS by design (
f. (4.9)). Assume, therefore, that x 2 O1, so thatjKAjKxj � 1; j = 0; 1; : : : (4.13)
8



For any i 2 f1; 2; : : : ; NgAiK = (A�BK)Ai�1K = AAi�1K �BKAi�1K= A(A�BK)Ai�2K �BKAi�1K = A2Ai�2K �ABKAi�2K �BKAi�1K= A2(A�BK)Ai�3K �ABKAi�2K � BKAi�1K= A3Ai�3K �A2BKAi�3K �ABKAi�2K �BKAi�1K...= Ai�1AK � i�2Xj=0AjBKAi�1�jKwhi
h implies KAi�1AKx = KAiKx+ i�2Xj=0KAjBKAi�1�jK x (4.14)>From (4.13) and (4.14), we obtain the inequalityjKAi�1AKxj � jKAiKxj+ i�2Xj=0 jKAjBjjKAi�1�jK xj (4.15)� 1 + i�2Xj=0 jKAjBj = �i (4.16)This implies x 2 Xi for i = 1; 2; : : : ; N � 1 (
f. (3.20)). To show that O1 � �XN noti
e, from (4.6), that�XN 
an be written as the union of three sets:�XN = V1 [ V2 [ V3; (4.17)where V1 := fx j jKxj � 1g \ fx j jKAN�1AKxj � �Ng;V2 := fx j Kx < �1g \ fx j jKAN�1(Ax +B)j � �Ng;V3 := fx j Kx > 1g \ fx j jKAN�1(Ax�B)j � �Ng:Then, it follows from (4.13) and (4.16) that x 2 O1 implies x 2 V1 and, hen
e, x 2 �XN .Example 1 In this example, the relative size of the sets O1, �YN and �ZN is illustrated. Consider thesystem x+ = Ax+Bu, y = Cx withA = " 1 00:4 1# ; B = " 0:40:08# ; C = h0 1i ;whi
h is the zero-order hold dis
retisation, with a sampling period of 0:4 se
., of the double integrator_x1 = u, _x2 = x1, y = x2. In Eqs. (3.5){(3.6) we take: Q = I2�2 and R = 0:25. The matrix P and thegain K were 
omputed from (3.13){(3.14).In Figure 1 we show the set �YN , the maximal output admissible set O1 and an `estimate' of the set�ZN . In this example YN is 
ompa
t and YN � �XN . Therefore, we take DS = IRn in (4.7) and obtain�YN = YN = \N�1i=0 Xi:9
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Figure 1: Set boundaries for the example. (In the 
ase of �ZN an estimate obtained numeri
ally is shown.Note that O1 � �ZN � �YN .)The estimate of �ZN was obtained numeri
ally by gridding the set �YN and 
he
king the 
ondition in(4.8) for ea
h point of the grid. In the implementation of the MPC algorithm, the test x0(N ;x) 2 Xf isperformed `on-line' (see x4.3 below) and, thus, an `expli
it' 
hara
terisation of Xf := �ZN is not required.We have in
luded an `estimate' of �ZN in the �gure for illustration purposes. As proven in Proposition 4,the set �ZN is �nitely determined and, in this example, the test �kn`(x) 2 �YN (
f. (4.8)) is stopped for ksu
h that �kn`(x) 2 O1. As the �gure shows, the new terminal 
onstraint set �ZN is 
onsiderably largerthan O1. uWe now state the main result of this paper.Theorem 3 The triple (F (�);Xf ; �f (�)) where F (�) := JN (�), Xf := �ZN and �f (�) := �n`(�), satis�es
onditions A1{A4.Proof: (i) It is established in Proposition 1 above that Xf := �ZN is 
losed and 
ontains the origin inits interior, thus satisfying A1.(ii) �f (�) := �n`(�) satis�es A2 by de�nition (
f. (3.27)).(iii) That Xf := �ZN is positively invariant for the system x+ = f(x; �f (x)) = �n`(x) is established inProposition 1 above.(iv) We have shown in Proposition 3 (
f. (4.10)) that F (�) := JN (�) satis�es[ �F + `℄(x; �n`(x)) = 0for all x 2 Xf , thus satisfying A4.
10



4.3 Implementation of the MPC algorithmSin
e �ZN is not de�ned by linear inequalities and JN (�) is not quadrati
, problem PN(�) with F (�) =JN (�), Xf = �ZN and �f (�) = �n`(�) is not a quadrati
 program. Indeed it is not even ne
essarily a
onvex program sin
e there is no guarantee that �ZN is 
onvex. (In general �ZN is non
onvex, as Figure 1illustrates.) However, be
ause �ZN is �nitely spe
i�ed, the variant of model predi
tive 
ontrol in whi
hthe terminal 
onstraint is omitted from PN (�) and N is 
hosen (either a priori or online) to ensurethat the terminal 
onstraint is satis�ed (despite its omission from PN (�)) is easily implemented. Theresultant problem is 
onvex be
ause F (�) is 
onvex and positive de�nite and may be solved using 
onvexprogramming or, indeed, 
onventional non-linear programming (e.g., [8℄).5 Con
lusionsWe have shown how to obtain new terminal ingredients F (�), Xf , �f (�) (for the optimal 
ontrol problememployed in model predi
tive 
ontrol) that ensure 
losed-loop stability. The ingredients provide a largerterminal 
onstraint set than that provided by previous approa
hes thus fa
ilitating online solution ofthe optimal 
ontrol problem. Examples show that the new 
onstraint set Xf is larger than the outputadmissible set O1 
onventionally employed.Referen
es[1℄ C.C. Chen and L. Shaw, On re
eding horizon feedba
k 
ontrol, Automati
a 18 (1982), pp. 349{352.[2℄ J.A. De Don�a and G.C. Goodwin, Ellu
idation of the state-spa
e regions wherein model predi
tive
ontrol and anti-windup strategies a
hieve identi
al 
ontrol poli
ies, in: Pro
eedings of the 2000Ameri
an Control Conferen
e, Chi
ago, Illinois, 2000.[3℄ E.G. Gilbert and K.T. Tan, Linear systems with state and 
ontrol 
onstraints: The theory andappli
ation of maximal output admissible sets, IEEE Transa
tions on Automati
 Control, AC-36(1991), pp. 1008{1020.[4℄ A. Jadbabaie, J. Yu and J. Hauser, Un
onstrained re
eding horizon 
ontrol of nonlinear systems.Submitted to: IEEE Transa
tions on Automati
 Control.[5℄ S.S. Keerthi and E.G. Gilbert, Optimal, in�nite horizon feedba
k laws for a general 
lass of 
on-strained dis
rete time systems: Stability and moving-horizon approximations, Journal of Optimiza-tion Theory and Appli
ations, 57 (1988), pp. 265{293.[6℄ D.Q. Mayne, J.A. De Don�a and G.C. Goodwin, Improved stabilising 
onditions for model predi
tive
ontrol, in: Pro
eedings of the 39th IEEE Conferen
e on De
ision and Control, Sydney, NSW, 2000,pp. 172{177.[7℄ D.Q. Mayne, J.B. Rawlings, C.V. Rao and P.O.M. S
okaert, Constrained model predi
tive 
ontrol:Stability and optimality, Automati
a 36 (2000), pp. 789{814.[8℄ E. Polak, Optimization: Algorithms and Consistent Approximations, Springer Verlag, New York,1997. 11



[9℄ P.O.M. S
okaert and J.B. Rawlings, Constrained linear quadrati
 regulation, IEEE Transa
tionson Automati
 Control 43:8 (1998), pp. 1163{1169.[10℄ M. Sznaier and M.J. Damborg, Suboptimal 
ontrol of linear systems with state and 
ontrol in-equality 
onstraints, in: Pro
eedings of the 26th IEEE Conferen
e on De
ision and Control, LosAngeles, CA, 1987, pp. 761{762.

12


